![[Perpendicular_Accelerating_objects.png]]
Examine the diagram of two masses connected by a strong, taut string over a frictionless pulley where $m_1$ = 3.2 kg, $m_2$ = 4.1 kg, $\mu_s$ = 0.35, and $\mu_k$ = 0.28.
a) Show that the two masses will accelerate.
b) Determine the acceleration of the two objects.
c) Determine the force of tension in the string.
### ==Answer==
Start by drawing the FBDs for both $m_1$ and $m_2$. Label the forces.
![[Screen_Shot_2020-11-05_at_7.52.55_AM.png]]
a) If $F_{g1}$ > $F_f$ then the masses will accelerate. The maximum friction to overcome is caused by static friction.
$F_f$ = $\mu_s \cdot F_N$
$F_f$ = 0.35 (40.18 N) = 14.063 N
Since 14.063 N < 31.36 N then the masses will accelerate.
---
b) Use $\mu_k$ to determine $F_f$ because the objects are accelerating.
$F_f$ = 0.28 (40.18 N) = 11.2504 N
$m_1$
$\Sigma \vec{F}$ = $\vec{F}_{g1}$ + $\vec{F}_T$
$m_1 \vec{a}$ = $\vec{F}_{g1}$ + $\vec{F}_T$
$m_1a = m_1g - F_T$
$m_1a = m_1g - (m_2a + F_f)$
$m_2$
$\Sigma \vec{F}$ = $\vec{F}_T + \vec{F}_f$
$m_2\vec{a}$ = $\vec{F}_T + \vec{F}_f$
$m_2a = F_T - F_f$
==$m_2a + F_f = F_T$==
$m_1a + m_2a = m_1g - F_f$
$(m_1+m_2)a = m_1g-F_f$
$a = \frac{m_g - F_f}{m_1 + m_2}$
$a = \frac{31.36 N - 11.2504 N}{3.2 kg + 4.1 kg}$
a = 2.8 $\frac{m}{s^2}$
---
c) $m_2a + F_f = F_T$
(4.1 kg)(2.755 $\frac{m}{s^2}$) + 11.2504 N = $F_T$
22.54 N = $F_T$
23 N = $F_T$