<p align="right">Last Update: <font color="#4f81bd">December 06, 2024</font></p> ## BIG IDEAS - Motion is the change of an object’s [[Notes Vault/Physics Notes Vault/Kinematics/1D Motion/Position|position]] with respect to [[Time|time]] relative to other objects. - Motion is relative, meaning it depends on the [[reference frame]] from which it is observed. --- ### Motion We encounter motion every day because practically all physical phenomena involve the motion of bodies. Thus, most physics courses begin with the analysis of motion. This branch of physics is called [[mechanics]]. Translational motion are linear, [[Circular Motion|circular]], and [[Notes Vault/Physics Notes Vault/Kinematics/2D Motion/Projectiles|projectile motion]]. In contrast to translational motion, in which the whole object moves, there is [[Rotational Motion|rotational motion]]. Two key ideas are force (the “cause”) and acceleration (the “effect”) - pictorial and graphical tools - models, a simplified description of reality ### Rest The term "rest" originates from early studies in classical mechanics, where it was used to describe a body that is stationary or not undergoing motion. Newton used the concept of rest to define and explain motion in his [[Newton's First Law|First Law of Motion]] (Law of Inertia). >[!info] >Galileo used the concept of "rest" in his discussions on motion, particularly in relation to the principles of inertia and relativity. #### Mathematical Representation Newton treated "rest" as a special case of motion where the velocity or an object ($v$) is zero: ##### Algebraic Representations $x(t) \ = \ x_0 \tag{1}$ $ v(t) = 0 \tag{2}$ $a(t) \ = \ 0 \tag{3}$ ##### Calculus Representations $v(t) \ = \ \frac{dx}{dt} \ = \ 0 \tag{4}$ $a(t) \ = \ \frac{dv}{dt} \tag{5}$ ##### Kinematic Equations For rest, where initial velocity $v_0 = 0$, and constant acceleration $a=0$, the kinematic equations simplify as follows: $x = x_0 \tag{6}$ ### Slide Decks <div style="position: relative; width: 100%; height: 0; padding-top: 56.2500%; padding-bottom: 0; box-shadow: 0 2px 8px 0 rgba(63,69,81,0.16); margin-top: 1.6em; margin-bottom: 0.9em; overflow: hidden; border-radius: 8px; will-change: transform;"> <iframe loading="lazy" style="position: absolute; width: 100%; height: 100%; top: 0; left: 0; border: none; padding: 0;margin: 0;" src="https://www.canva.com/design/DAGPwJi0xg8/MLiMdhUfn0kgxucxH8kVzg/view?embed" allowfullscreen="allowfullscreen" allow="fullscreen"> </iframe> </div> <div style="position: relative; width: 100%; height: 0; padding-top: 56.2500%; padding-bottom: 0; box-shadow: 0 2px 8px 0 rgba(63,69,81,0.16); margin-top: 1.6em; margin-bottom: 0.9em; overflow: hidden; border-radius: 8px; will-change: transform;"> <iframe loading="lazy" style="position: absolute; width: 100%; height: 100%; top: 0; left: 0; border: none; padding: 0;margin: 0;" src="https://www.canva.com/design/DAGT15Y6B3I/BPVsM2wDVhSKutsR0SJ7TA/view?embed" allowfullscreen="allowfullscreen" allow="fullscreen"> </iframe> </div> <div style="position: relative; width: 100%; height: 0; padding-top: 56.2500%; padding-bottom: 0; box-shadow: 0 2px 8px 0 rgba(63,69,81,0.16); margin-top: 1.6em; margin-bottom: 0.9em; overflow: hidden; border-radius: 8px; will-change: transform;"> <iframe loading="lazy" style="position: absolute; width: 100%; height: 100%; top: 0; left: 0; border: none; padding: 0;margin: 0;" src="https://www.canva.com/design/DAGRo-Hn0DA/sbyGKl4y2-dSa_jCH4iomQ/view?embed" allowfullscreen="allowfullscreen" allow="fullscreen"> </iframe> </div> ### Video <iframe width="100%" height="480" style="border:0;" scrolling="no" src="https://go.screenpal.com/player/c06F2NVE64m?width=100%&height=480&ff=1&title=0" allowfullscreen="true"></iframe> ### Related Topics --- Return [[Home|Home]] | [[Mechanics]] | [[Notes Vault/Physics Notes Vault/Kinematics/Kinematics|Kinematics]] | [[Notes Vault/Physics Notes Vault/Dynamics/Dynamics|Dynamics]] | [[Momentum]] | [[Energy]]